Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.305
Filter
2.
J Ovarian Res ; 17(1): 101, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745186

ABSTRACT

BACKGROUND: Shikonin (SK), a naphthoquinone with anti-tumor effects, has been found to decrease production of tumor-associated exosomes (exo). This study aims to verify the treatment effect of SK on ovarian cancer (OC) cells, especially on the production of exo and their subsequent effect on macrophage polarization. METHODS: OC cells SKOV3 and A2780 were treated with SK. The exo were isolated from OC cells with or without SK treatment, termed OC exo and SK OC exo, respectively. These exo were used to treat PMA-induced THP-1 cells (M0 macrophages). M2 polarization of macrophages was determined by measuring the M2 specific cell surface markers CD163 and CD206 as well as the secretion of M2 cytokine IL-10. The functions of galectin 3 (LGALS3/GAL3) and ß-catenin in macrophage polarization were determined by gain- or loss-of-function assays. CB-17 SCID mice were subcutaneously injected with SKOV3 cells to generate xenograft tumors, followed by OC exo or SK OC exo treatment for in vivo experiments. RESULTS: SK suppressed viability, migration and invasion, and apoptosis resistance of OC cells in vitro. Compared to OC exo, SK OC exo reduced the M2 polarization of macrophages. Regarding the mechanism, SK reduced exo production in cancer cells, and it decreased the protein level of GAL3 in exo and recipient macrophages, leading to decreased ß-catenin activation. M2 polarization of macrophages was restored by LGALS3 overexpression but decreased again by the ß-catenin inhibitor FH535. Compared to OC exo, the SK OC exo treatment reduced the xenograft tumor growth in mice, and it decreased the M2 macrophage infiltration within tumor tissues. CONCLUSION: This study suggests that SK reduces M2 macrophage population in OC by repressing exo production and blocking exosomal GAL3-mediated ß-catenin activation.


Subject(s)
Exosomes , Galectin 3 , Macrophages , Naphthoquinones , Ovarian Neoplasms , beta Catenin , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Humans , Exosomes/metabolism , Animals , Macrophages/metabolism , Macrophages/drug effects , beta Catenin/metabolism , Galectin 3/metabolism , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Cell Movement/drug effects , Apoptosis/drug effects , Mice, SCID
3.
JCI Insight ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713510

ABSTRACT

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned hIL-6 transgenic NSG mice (NSG+hIL6) reliably support the engraftment of malignant and pre-malignant human plasma cells including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and post-relapse myeloma, plasma cell leukemia, and AL amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells, developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single cell RNA sequencing showed non-malignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma engrafted mice given CAR T-cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results established NSG+hIL6 mice as an effective patient derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.

4.
Front Microbiol ; 15: 1387309, 2024.
Article in English | MEDLINE | ID: mdl-38716170

ABSTRACT

Senecavirus A (SVA) is an important emerging swine pathogen that causes vesicular lesions in swine and acute death in newborn piglets. VP2 plays a significant role in the production of antibodies, which can be used in development of diagnostic tools and vaccines. Herein, the aim of the current study was to identify B-cell epitopes (BCEs) of SVA for generation of epitope-based SVA marker vaccine. Three monoclonal antibodies (mAbs), named 2E4, 1B8, and 2C7, against the SVA VP2 protein were obtained, and two novel linear BCEs, 177SLGTYYR183 and 266SPYFNGL272, were identified by peptide scanning. The epitope 177SLGTYYR183 was recognized by the mAb 1B8 and was fully exposed on the VP2 surface, and alanine scanning analysis revealed that it contained a high continuity of key amino acids. Importantly, we confirmed that 177SLGTYYR183 locates on "the puff" region within the VP2 EF loop, and contains three key amino acid residues involved in receptor binding. Moreover, a single mutation, Y182A, blocked the interaction of the mutant virus with the mAb 1B8, indicating that this mutation is the pivotal point for antibody recognition. In summary, the BCEs that identified in this study could be used to develop diagnostic tools and an epitope-based SVA marker vaccine.

5.
J Bioenerg Biomembr ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720136

ABSTRACT

Vesicle-associated membrane protein 8 (VAMP8), a soluble n-ethylmaleimide-sensitive factor receptor protein, acts as an oncogenic gene in the progression of several malignancies. Nevertheless, the roles and mechanisms of VAMP8 in colorectal cancer (CRC) progression remain unknown. The expression and prognostic significance of VAMP8 in CRC samples were analyzed through bioinformatics analyses. Cell proliferation was detected using CCK-8 and EdU incorporation assays and apoptosis was evaluated via flow cytometry. Western blot analysis was conducted to examine the protein expression. Ferroptosis was evaluated by measurement of iron metabolism, lipid peroxidation, and glutathione (GSH) content. VAMP8 was increased in CRC samples relative to normal samples on the basis of GEPIA and HPA databases. CRC patients with high level of VAMP8 had a worse overall survival. VAMP8 depletion led to a suppression of proliferation and promotion of apoptosis in CRC cells. Additionally, VAMP8 knockdown suppressed beclin1 expression and LC3-II/LC3-I ratio, elevated p62 expression, increased Fe2+, labile iron pool, lipid reactive oxygen species, and malondialdehyde levels, and repressed GSH content and glutathione peroxidase activity. Moreover, VAMP8 knockdown inhibited the activation of janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in CRC cells. Mechanistically, activation of the JAK/STAT3 pathway by JAK1 or JAK2 overexpression attenuated VAMP8 silencing-mediated anti-proliferative, pro-apoptotic, anti-autophagic, and pro-ferroptotic effects on CRC cells. In conclusion, VAMP8 knockdown affects the proliferation, apoptosis, autophagy, and ferroptosis by the JAK/STAT3 pathway in CRC cells.

6.
Int Ophthalmol ; 44(1): 213, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700596

ABSTRACT

PURPOSE: This study aimed to explore the diagnostic value of whole-orbit-based multiparametric assessment on Dixon MRI for the evaluation of the thyroid eye disease (TED) activity. METHODS: The retrospective study enrolled patients diagnosed as TED and obtained their axial and coronal Dixon MRI scans. Multiparameters were assessed, including water fraction (WF), fat fraction (FF) of extraocular muscles (EOMs), orbital fat (OF), and lacrimal gland (LG). The thickness of OF and herniation of LG were also measured. Univariable and multivariable logistic regression was applied to construct prediction models based on single or multiple structures. Receiver operating characteristic (ROC) curve analysis was also implemented. RESULTS: Univariable logistic analysis revealed significant differences in water fraction (WF) of the superior rectus (P = 0.018), fat fraction (FF) of the medial rectus (P = 0.029), WF of OF (P = 0.004), and herniation of LG (P = 0.012) between the active and inactive TED phases. Multivariable logistic analysis and corresponding receiver operating characteristic curve (ROC) analysis of each structure attained the area under the curve (AUC) values of 0.774, 0.771, and 0.729 for EOMs, OF, and LG, respectively, while the combination of the four imaging parameters generated a final AUC of 0.909. CONCLUSIONS: Dixon MRI may be used for fine multiparametric assessment of multiple orbital structures. The whole-orbit-based model improves the diagnostic performance of TED activity evaluation.


Subject(s)
Graves Ophthalmopathy , Oculomotor Muscles , Orbit , ROC Curve , Humans , Male , Female , Graves Ophthalmopathy/diagnosis , Graves Ophthalmopathy/diagnostic imaging , Retrospective Studies , Middle Aged , Orbit/diagnostic imaging , Orbit/pathology , Oculomotor Muscles/diagnostic imaging , Oculomotor Muscles/pathology , Adult , Aged , Multiparametric Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Lacrimal Apparatus/diagnostic imaging , Lacrimal Apparatus/pathology
7.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727763

ABSTRACT

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Subject(s)
Glycine , Glyphosate , Hemin , Limit of Detection , Metal-Organic Frameworks , Pesticides , Pesticides/analysis , Pesticides/chemistry , Metal-Organic Frameworks/chemistry , Hemin/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Colorimetry/methods , Benzidines/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Dimethoate/analysis , Dimethoate/chemistry , Aptamers, Nucleotide/chemistry , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry
8.
Asian J Urol ; 11(2): 304-310, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680581

ABSTRACT

Objective: Rheumatoid nephropathy is one of the most severe extra-articular manifestations of rheumatoid arthritis (RA) associated with a very unfavorable prognosis. This study aimed to identify changes in renal function and morphological variations of kidney diseases in RA patients. Methods: The study enrolled patients (126 patients) between 18 and 55 years of age with a confirmed active RA of more than 12 months. Each patient underwent the following range of laboratory and instrumental research methods: general clinical analysis of blood and urine, performing urinalysis according to Nechiporenko method; determining daily proteinuria; determining the blood content of glucose, urea, creatinine, uric acid, total bilirubin, liver transaminase level, ionogram, lipidogram, and coagulogram; determining the blood content of rheumatoid factor, anti-streptolysin O, and C-reactive protein; and X-ray of the joints of hands and feet. Renal function was examined by estimating glomerular filtration rate, tubular reabsorption index, and renal functional reserve. For studying the morphological changes in the kidneys under ultrasound examination, renal biopsy was performed in 31 patients with RA with urinary syndrome (proteinuria more than 0.3 g per day and hematuria). Results: Nephropathy in RA is characterized by impaired renal function and manifested by an increased blood creatinine and a decrease in glomerular filtration rate and renal functional reserve. Among morphological variations of nephropathy at RA, mesangial proliferative glomerulonephritis prevails, accounting for 48.4% of patients. Other disorders include the secondary amyloidosis (29.0% of patients), tubulointerstitial nephritis (16.1%), membranous glomerulonephritis (3.2%), and focal-segmental glomerulosclerosis (3.2%). Conclusion: Kidney damage is a common systemic manifestation of RA with a long and active course, a major nephropathy trigger.

9.
Innovation (Camb) ; 5(3): 100621, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38680817

ABSTRACT

With over a million cases detected each year, skin disease is a global public health problem that diminishes the quality of life due to its difficulty to eradicate, propensity for recurrence, and potential for post-treatment scarring. Photodynamic therapy (PDT) is a treatment with minimal invasiveness or scarring and few side effects, making it well tolerated by patients. However, this treatment requires further research and development to improve its effective clinical use. Here, a piezoelectric-driven microneedle (PDMN) platform that achieves high efficiency, safety, and non-invasiveness for enhanced PDT is proposed. This platform induces deep tissue cavitation, increasing the level of protoporphyrin IX and significantly enhancing drug penetration. A clinical trial involving 25 patients with skin disease was conducted to investigate the timeliness and efficacy of PDMN-assisted PDT (PDMN-PDT). Our findings suggested that PDMN-PDT boosted treatment effectiveness and reduced the required incubation time and drug concentration by 25% and 50%, respectively, without any anesthesia compared to traditional PDT. These findings suggest that PDMN-PDT is a safe and minimally invasive approach for skin disease treatment, which may improve the therapeutic efficacy of topical medications and enable translation for future clinical applications.

10.
Mol Genet Genomic Med ; 12(4): e2439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613222

ABSTRACT

OBJECTIVE: To characterize the phenotype spectrum, diagnosis, and response to growth-promoting therapy in patients with ACAN variants causing familial short stature. METHODS: Three families with ACAN variants causing short stature were reported. Similar cases in the literature were summarized, and the genotype and phenotype were analyzed. RESULTS: Three novel heterozygous variants, c.757+1G>A, (splicing), c.6229delG, p.(Asp2078Tfs*1), and c.6679C>T, p.(Gln2227*) in the ACAN gene were identified. A total of 314 individuals with heterozygous variants from 105 families and 8 individuals with homozygous variants from 4 families were confirmed to have ACAN variants from literature and our 3 cases. Including our 3 cases, the variants reported comprised 33 frameshift, 39 missense, 23 nonsense, 5 splicing, 4 deletion, and 1 translocation variants. Variation points are scattered throughout the gene, while exons 12, 15, and 10 were most common (25/105, 11/105, and 10/105, respectively). Some identical variants existing in different families could be hot variants, c.532A>T, p.(Asn178Tyr), c.1411C>T, p.(Gln471*), c.1608C>A, p.(Tyr536*), c.2026+1G>A, (splicing), and c.7276G>T, p.(Glu2426*). Short stature, early-onset osteoarthritis, brachydactyly, midfacial hypoplasia, and early growth cessation were the common phenotypic features. The 48 children who received rhGH (and GnRHa) treatment had a significant height improvement compared with before (-2.18 ± 1.06 SD vs. -2.69 ± 0.95 SD, p < 0.001). The heights of children who received rhGH (and GnRHa) treatment were significantly improved compared with those of untreated adults (-2.20 ± 1.10 SD vs. -3.24 ± 1.14 SD, p < 0.001). CONCLUSION: Our study achieves a new understanding of the phenotypic spectrum, diagnosis, and management of individuals with ACAN variants. No clear genotype-phenotype relationship of patients with ACAN variants was found. Gene sequencing is necessary to diagnose ACAN variants that cause short stature. In general, appropriate rhGH and/or GnRHa therapy can improve the adult height of affected pediatric patients caused by ACAN variants.


Subject(s)
Dwarfism , Human Growth Hormone , Adult , Humans , Child , Genotype , Phenotype , Heterozygote , Homozygote , Patients , Aggrecans
11.
Mol Cancer Ther ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647536

ABSTRACT

Hepatocellular carcinoma (HCC) has a pathogenesis that remains elusive with restricted therapeutic strategies and efficacy. This study aimed to investigate the role of SMG5, a crucial component in nonsense-mediated mRNA decay (NMD) that degrades mRNA containing a premature termination codon (PTC), in HCC pathogenesis and therapeutic resistance. We demonstrated an elevated expression of SMG5 in HCC and scrutinized its potential as a therapeutic target. Our findings revealed that SMG5 knockdown not only inhibited the migration, invasion, and proliferation of HCC cells but also influenced sorafenib resistance. Differential gene expression analysis between the control and SMG5 knockdown groups showed an upregulation of MAT1A in the latter. High expression of MAT1A, a catalyst for S-adenosylmethionine (SAM) production, as suggested by TCGA data, was indicative of a better prognosis for HCC. Further, an enzyme-linked immunosorbent assay showed a higher concentration of SAM in SMG5 knockdown cell supernatants. Furthermore, we found that exogenous SAM supplementation enhanced the sensitivity of HCC cells to sorafenib alongside changes in the expression of Bax and Bcl 2, apoptosis-related proteins. Our findings underscore the important role of SMG5 in HCC development and its involvement in sorafenib resistance, highlighting it as a potential target for HCC treatment.

12.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1186-1195, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621965

ABSTRACT

Polysaccharides from medicinal plant resources are a kind of polymers extracted from medicinal plants. They are complex long chains formed by different monosaccharides connected via glucosidic bonds. These polysaccharides usually have straight chain and branched chain structures, and their relative molecular weight changes greatly. Modern studies have shown that the biological activi-ty of polysaccharides from medicinal plant resources is closely related to their relative molecular weight. This paper first reviewed the preparation and detection methods of polysaccharides from medicinal plant resources with different relative molecular weights. Then, the paper summarized and analyzed the general experience of the correlation between efficacy and relative molecular weight of polysaccharides from medicinal plant resources with different molecular weights. It was considered that polysaccharides with large relative molecular weights(>100 kDa) play a leading role in immune regulation. Polysaccharides with medium relative molecular weights(10-100 kDa) play a leading role in immune regulation and the protection of the liver. Polysaccharides with small relative molecular weights(<10 kDa) play a leading role in anti-oxidation, regulation of intestinal flora, regulation of blood glucose and lipids, anti-fatigue, and the protection of nerves. Therefore, precise development of polysaccharides from medicinal plant resources based on relative molecular weight is expected to improve their biological activity and application value.


Subject(s)
Plants, Medicinal , Plants, Medicinal/chemistry , Molecular Weight , Polysaccharides/chemistry , Monosaccharides/chemistry
13.
Signal Transduct Target Ther ; 9(1): 79, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565886

ABSTRACT

Fluoropyrimidine-based combination chemotherapy plus targeted therapy is the standard initial treatment for unresectable metastatic colorectal cancer (mCRC), but the prognosis remains poor. This phase 3 trial (ClinicalTrials.gov: NCT03950154) assessed the efficacy and adverse events (AEs) of the combination of PD-1 blockade-activated DC-CIK (PD1-T) cells with XELOX plus bevacizumab as a first-line therapy in patients with mCRC. A total of 202 participants were enrolled and randomly assigned in a 1:1 ratio to receive either first-line XELOX plus bevacizumab (the control group, n = 102) or the same regimen plus autologous PD1-T cell immunotherapy (the immunotherapy group, n = 100) every 21 days for up to 6 cycles, followed by maintenance treatment with capecitabine and bevacizumab. The main endpoint of the trial was progression-free survival (PFS). The median follow-up was 19.5 months. Median PFS was 14.8 months (95% CI, 11.6-18.0) for the immunotherapy group compared with 9.9 months (8.0-11.8) for the control group (hazard ratio [HR], 0.60 [95% CI, 0.40-0.88]; p = 0.009). Median overall survival (OS) was not reached for the immunotherapy group and 25.6 months (95% CI, 18.3-32.8) for the control group (HR, 0.57 [95% CI, 0.33-0.98]; p = 0.043). Grade 3 or higher AEs occurred in 20.0% of patients in the immunotherapy group and 23.5% in the control groups, with no toxicity-associated deaths reported. The addition of PD1-T cells to first-line XELOX plus bevacizumab demonstrates significant clinical improvement of PFS and OS with well tolerability in patients with previously untreated mCRC.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Oxaloacetates , Humans , Bevacizumab/therapeutic use , Capecitabine/therapeutic use , Oxaliplatin , Colorectal Neoplasms/drug therapy , Fluorouracil/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/drug therapy , Immunotherapy
14.
Haematologica ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572553

ABSTRACT

Resistance to glucocorticoids (GCs), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-of-function experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GCresistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GCs against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.

15.
J Magn Reson Imaging ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682584

ABSTRACT

BACKGROUND: Thyroid eye disease (TED), particularly its sight-threatening complication, dysthyroid optic neuropathy (DON), profoundly impacts patients' visual health. The pathological changes in the white matter (WM) fibers within the intracranial visual pathway in TED have been infrequently studied. Understanding these changes holds crucial importance for exploring the pathogenesis and prognosis of TED. PURPOSE: To utilize fixel-based analysis (FBA) to clarify the type of microstructural damage occurring in the visual pathway in TED. STUDY TYPE: Prospective. SUBJECTS: 28 TED with DON patients (11 males and 17 females), 28 TED without DON (non-DON) patients (12 males and 16 females), and 28 healthy controls (HCs) (12 males and 16 females). FIELD STRENGTH/SEQUENCE: 3 T; multishell diffusion MRI using echo planar imaging. ASSESSMENT: Fiber density (FD) and fiber-bundle cross-section (FC) were calculated to characterize WM microstructural alteration in TED visual pathway. The correlations between FBA metrics and visual field index and mean deviation were examined. STATISTICAL TESTS: One-way analysis of variance, Kruskal-Wallis, t-tests, Mann-Whitney U, Chi-square, and Pearson correlation, were conducted with false discovery rate and family wise error corrections. Significance was set at P < 0.05. RESULTS: Both DON and non-DON groups showed significant FD loss in the right optic tract compared with HCs, with DON patients experiencing more severe FD loss. Only DON patients had FD loss in the right optic radiation (OR) compared with the non-DON patients and HCs, with no FC difference across groups. FD in DON patients' ORs significantly correlated with visual field index (r = 0.857) and mean deviation (r = 0.751). DATA CONCLUSION: Both DON and non-DON affect the WM microstructure of the visual pathway to varying extents. Visual field metrics can reflect the severity of FD damage to the OR in the visual pathway of DON patients. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.

16.
Biol Trace Elem Res ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683269

ABSTRACT

The environmental pollution of cadmium is worsening, and its significant carcinogenic effects on humans have been confirmed. Cadmium can induce cancer through various signaling pathways, including the ERK/JNK/p38MAPK, PI3K/AKT/mTOR, NF-κB, and Wnt. It can also cause cancer by directly damaging DNA and inhibiting DNA repair systems, or through epigenetic mechanisms such as abnormal DNA methylation, LncRNA, and microRNA. However, the detailed mechanisms of Cd-induced cancer are still not fully understood and require further investigation.

17.
Foods ; 13(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38672952

ABSTRACT

Abuse of herbicides in food safety is a vital concern that has an influence on the sustainable development of the world. This work presents, a modified ionization method with separation of the sample and carrier gas inlets, which was utilized for efficient ionization and analyte transfer of herbicides in crops. The working parameters of voltage, injective distance, desorption temperature, and the carrier gas flow rate were optimized to achieve the high efficiency of the transfer and ionization of the analyte. When it was applied in the analysis of herbicides in laboratory, the method exhibited excellent performance in achieving the quantitative detection of herbicides in solutions and residues spiked in an actual matrix with a limit of quantification of 1-20 µg/kg and relative standard deviations of less than 15%. Although a simple QuEchERS process was used, the programmable heating platform ensured efficient gasification and transfer of the target analyte, with the advantages of high speed and selectivity, avoiding the noted matrix effect. The method exhibited a relatively acceptable performance by using air as the discharged gas (open air). It could be used to monitor herbicide residues in the growth stage via on-site non-destructive analysis, which obtained low LODs by dissociating the herbicides from the crops without any pretreatment. It showed great potential for the supervision of the food safety market by achieving non-destructive detection of crops anytime and anywhere. This finding may provide new insights into the determination of pesticide emergence and rice quality assessment.

18.
Cell Biochem Funct ; 42(3): e4017, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603595

ABSTRACT

Chromosomal instability (CIN), caused by errors in the segregation of chromosomes during mitosis, is a hallmark of many types of cancer. The fidelity of chromosome segregation is governed by a sophisticated cellular signaling network, one crucial orchestrator of which is Heterochromatin protein 1 (HP1). HP1 dynamically localizes to distinct sites at various stages of mitosis, where it regulates key mitotic events ranging from chromosome-microtubule attachment to sister chromatid cohesion to cytokinesis. Our evolving comprehension of HP1's multifaceted role has positioned it as a central protein in the orchestration of mitotic processes.


Subject(s)
Chromobox Protein Homolog 5 , Mitosis
19.
PLoS Pathog ; 20(4): e1012146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38669242

ABSTRACT

Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.


Subject(s)
Apoptosis , Herpesvirus 1, Suid , Mitochondria , Pseudorabies , Viral Proteins , Animals , Herpesvirus 1, Suid/pathogenicity , Herpesvirus 1, Suid/genetics , Mice , Mitochondria/metabolism , Mitochondria/virology , Pseudorabies/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Herpesviridae/pathogenicity , Herpesviridae/genetics , Virus Replication/physiology , Humans , Mice, Inbred BALB C , Virulence
20.
BMC Med Genomics ; 17(1): 93, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641608

ABSTRACT

Acute pancreatitis (AP) is a common systemic inflammatory disease resulting from the activation of trypsinogen by various incentives in ICU. The annual incidence rate is approximately 30 out of 100,000. Some patients may progress to severe acute pancreatitis, with a mortality rate of up to 40%. Therefore, the goal of this article is to explore the key genes for effective diagnosis and treatment of AP. The analysis data for this study were merged from two GEO datasets. 1357 DEGs were used for functional enrichment and cMAP analysis, aiming to reveal the pathogenic genes and potential mechanisms of AP, as well as potential drugs for treating AP. Importantly, the study used LASSO and SVM-RFE machine learning to screen the most likely AP occurrence biomarker for Prdx4 among numerous candidate genes. A receiver operating characteristic of Prdx4 was used to estimate the incidence of AP. The ssGSEA algorithm was employed to investigate immune cell infiltration in AP. The biomarker Prdx4 gene exhibited significant associations with a majority of immune cells and was identified as being expressed in NKT cells, macrophages, granulocytes, and B cells based on single-cell transcriptome data. Finally, we found an increase in Prdx4 expression in the pancreatic tissue of AP mice through immunohistochemistry. After treatment with recombinant Prdx4, the pathological damage to the pancreatic tissue of AP mice was relieved. In conclusion, our study identified Prdx4 as a potential AP hub gene, providing a new target for treatment.


Subject(s)
Pancreatitis , Animals , Humans , Mice , Acute Disease , Algorithms , Biomarkers , Machine Learning , Pancreatitis/diagnosis , Pancreatitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...